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Computational Number Theory

H.J.). te Riele

1. INTRODUCTION

Natural numbers—the numbers by which we count—have always struck the
imagination. Problems involving natural numbers often are simple to state,
but their solution may require a lot of mathematical creativity and ingenuity.
A classical example i1s the problem of perfect numbers which was studied
already by the ancient Greeks: nowadays, it has become a standard problem
for testing the accuracy and reliability of new computers and software. (See
also figure 1.) Daily life, even in antiquity, is unthinkable without counting,
so the scientific discipline now known as Number Theory finds its roots in
practical problems of every day.

In number theory, one studies the properties of natural and rational num-
bers and the solution of equations by such numbers. Some typical questions
are: what are the divisors of a given number and how many are there? How
many prime numbers (i.e., numbers > 1 only divisible by 1 and themselves)
are there below a given bound x7 Is there an n > 2 for which the equation
™ + y™ = z™ has a solution in rational numbers?

Many problems can be solved in a step-by-step way, 1.e., with the help
of an algorithm. Loosely speaking, an algorithm is a set of arithmetic rules
which yields, when applied to a prescribed input, a definite output in a finite
number of computational steps. The invention of mechanical and electronic
computers meant a huge step forward for the study of algorithms. These
machines, if programmed correctly, do not make mistakes nor lose concen-




e M e A P T S e o e R 4 - g

——mr

“1.J.]. TF RIELE

B B R e T T e e B e P PR

igure 1. Factorization of numbers has fascinated mathematicians from ancient Greece
through to the present day. Three prominent representatives are: Pierre de Fermat

(1601-1665, above left), C.F. Gauss (1777-1855, above right), and Hendrik W. Lenstra,
Jr. (b. 1949, below).

ration, so they are perfectly suited to serve as modern slaves for the te-
llous and time-consuming work of the computational number-theorist. In

addition, many known ingenious algorithims for answering number-theoretic
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questions would not have been invented without computers. For example,
modern algorithms for finding the prime factors of large nuimbers, are very
inefficient for small numbers, and it is even practically impossible to apply
them without the help of fast electronic computers. The advent of vec-
tor computers in the eighties, and parallel computers in the nineties has
stimulated the study of algorithms for such architectures. Several number-
theoretic problems, like those where one wants to find numbers with a spe-
cilal property, are well-suited for treatment with the help of such vector
and /or parallel algorithms.

These developments have given rise to the birth of ‘Computational (or
Algorithmic) Number Theory’. Here, the computer is a tool for experimen-
tation and for testing hypotheses, and it is a stimulus for the development

of ever more efficient algorithms, which can lead to new insight and new
mathematical results.

2. GLOBAL DEVELOPMENTS IN COMPUTATIONAL NUMBER THEORY
Before the advent of fast electronic computers, tables were an important
ald to number-theorists. Nowadays, it 1s much more efficient to save a
computer program or implemented algorithm and to quickly generate the
tables or individual table entries each time they are needed. Collections of
such (sub)programs are available now in several computer algebra packages
like PARI, MAPLE and MATHEMATICA. They enable the researcher to
perform arithmetic calculations (in arbitrary precision) on mathematical
objects such as numbers, vectors, matrices, algebraic numbers and finite
fields, and to perform symbolic computation like integration, differentiation
and formal series expansion.

The design, implementation, and analysis of efficient algorithms for solv-
ing number-theoretic problems has been the main activity of researchers in
computational number theory. As an illustration, we will briefly describe
here three major algorithmic developments, namely, in factoring, primality
testing and lattice basis reduction. A survey of modern factoring methods
can be found in [2]. An excellent historical survey of the computational his-
tory of factoring and primality testing from 1750 to about 1950, i.e., before
the era of electronic computers is presented in [5|. Old and modern primal-
ity tests are treated in |1]; this book also treats algorithms for lattice basis
reduction. An excellent textbook on algorithmic algebraic number theory is

3].

2.1. Factoring

An important stimulus for the study of factoring algorithms was the dis-
covery by R.L. Rivest, A. Shamir and L. Adleman, in 1978, of a public-key
encryption scheme, now known as RSA. It is based on the (presumed) difh-
culty of decomposing a given large number into prime factors. For the cur-
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rently best known factoring algorithms practical experience suggests that
factoring indeed is a hard problem, although nothing has been proved so
far.

T'he best known factoring algorithms try to find integers x and y with
the property that

r* = y* mod n, (2.1)
where n 1s the number to be factored (and known to be composite). For
such z and y, the number d = ged(z — y,n) is easily computed by a well-
known algorithm of Euclid, and d is a proper divisor of n in at least half the
number of cases for which (2.1) holds. So if we have no success, we try to
find another pair z, y. To find a congruence of the form (2.1), one tries to
collect many congruences of the form 3:;? = a; mod n, where the a; only have
prime factors in a given set F, which is called the factor base. If we have
succeeded to find more such congruences (also called relations) than there
are different primes in the factor base, we can combine them with the help
of linear algebra techniques (Gaussian elimination or iterative methods), to
find a congruence of the form (2.1). There are several methods to find the
above relations. One is based on the computation of the continued fraction
of \/n and another is based on efficient sieving techniques for finding values
of quadratic polynomials which only consist of prime factors in the set F.

I'wo important algorithmic discoveries have effectuated a jump in the size
of the numbers which can be factored within a reasonable time on a modern
computer: the quadratic sieve method (QS) published in its modern form
in 1985 by C. Pomerance (but with main ideas going back to M. Kraitchik
in 1926), and the elliptic curve method (ECM) published in 1987 by H.W.
Lenstra, Jr. ECM is suitable to find factors up to 35-40 decimal digits of
large numbers. Its complexity, as conjectured theoretically, and as observed
in the experiments, depends primarily on the size of the smallest prime
factor p of the number n which we wish to factor. The complexity of the
quadratic sieve method depends on the size of n, and not on its prime
factors. It is still the method by which the largest numbers (not of a special
form like a™ + b where a and b are small compared to a™ + b) have been
factored. The present world record is the so-called RSA-129 number, a
number of 129 decimal digits. In 1977 Rivest et al. challenged the public
to factor this number. They estimated that the required running time,
using the best algorithms and machines available in 1977, would be 40
quadrillion (= 10!°) years. It was factored only seventeen years later, in
April 1994, with a variation of the quadratic sieve method after an eight—
month worldwide computing effort organized by D. Atkins, M. Graff, A K.
Lenstra, and P. Leyland. Also CWI has contributed idle workstation cycles
to this result. RSA-129 turned out to be the product of two primes, one of
64 and one of 65 digits, and it is a typical example of a key used in the RSA
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public-key encryption scheme. ECM and QS nicely complement each other:
one usually tries ECM first in order to find factors less than 25-30 decimal
digits. If one is lucky, larger factors are sometimes found: the world record
1s a prime factor of 42 decimal digits. In the next step QS is tried, provided
that the number to be factored i1s small enough: popularly spoken, ECM
hinds smaller factors of larger numbers, QS finds larger factors of smaller
numbers.

A third method, called the Number Field Sieve (NFS) and published in
1993 by J.M. Pollard, and in refined form by J.P. Buhler, H-W. Lenstra,
Jr., and C. Pomerance, is expected to be more efficient for general numbers
than the quadratic sieve, and it is the subject of intensive current research
to find out where the cross-over point between NFS and QS lies. (See also
figure 2.)

The size of the numbers which could just be factored at a given time with
the available algorithms and computer technology was about 25 decimal
digits in 1967, 40-50 in 1974, 70-80 in 1987, 100 in 1990, and 120-130 at
present. This illustrates the rapid developments, both in algorithms and
in hardware, if we realize that for the best known factoring methods the

computational effort roughly doubles if the number to be factored grows
with 2—-3 decimal digits.

2.2. Primality testing

Before we are going to try to factor a number n, how do we know that
n indeed is composite? Tests for compositeness are based on the ‘Little
Theorem’ of Fermat which states that if p is a prime number, and a 1s a
positive integer such that ged(a,p) = 1, then a?~! = 1 mod p. So if we find
for some b with ged(b,n) = 1 that 6"~ ! # 1 mod n, then n cannot be prime,
and we can attempt to factor n. If the test yields = 1 mod n, we can not
be sure that n is prime since the converse of Fermat’s Little Theorem does
not hold. However, in most such cases n indeed is prime and exceptions are
very rare. The simplest way to rigorously prove primality of n 1s to show
that it has no divisors < /n. For small n this method works on a modern
PC or workstation, but for larger n (consisting of more than 15 decimal
digits, say) the number of operations becomes too large. Until 1980, the
available primality tests were based on the knowledge of the prime factors
of n — 1 or n+ 1 and became impractical for numbers of more than 100
decimal digits. A breakthrough came when Adleman, Pomerance, and R.
Rumely found a test that was efficient for much larger numbers. This was
simplified and improved by H. Cohen, and H.-W. Lenstra, Jr. An efficient
implementation was written by H. Cohen and A.K. Lenstra, with the help
of D.T. Winter at CWI. With this program, it was possible 1n 1986 to prove
primality of numbers up to 300 decimal digits in a few minutes CPU-time.
At present, one is able to prove primality of general numbers with more than
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Figure 2. History of factoring records obtained with general-purpose factoring meth-
ods: Continued Fraction (blue), Quadratic Sieve (yellow), and General Number Field

Sieve (red).
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1000 decimal digits, thanks to algorithmic and implementational results of
A. Atkin, F. Morain, W. Bosma, and M.-P. van der Hulst. For numbers
ot a special form, like the Mersenne numbers 2¢ — 1, special primality tests
are known. In fact, the largest known prime number is the Mersenne prime
2809433 _ 1 " a number of 258,716 deciial digits. It was discovered by D.
Slowinski and P. Gage in 1994 with the help of the so-called Lucas-Lehmer
test, which reads as follows: define the sequence {w;} by: uy; = 4 and
Uit1 = uf —2 (1 =0,1,...); then n = 2” — 1 is a prime if and only if p is a
prime > 2, and if n divides u,_s.

2.53. Lattice basis reduction

The third problem we mention here is that of finding small vectors in lat-
tices. In 1982, A.K. Lenstra, H-W. Lenstra, Jr., and L. Lovasz published
their so-called ‘lattice basis reduction’ algorithm. It computes from an ar-
bitrary basis of a lattice in R a so-called reduced basis which has certain
nice properties (its vectors are nearly orthogonal). The algorithm has many
important applications in a variety of mathematical fields, like the factor-
1zatlon of polynomials, public-key cryptography, extracting the square-root
of extremely large algebraic numbers (one crucial step in the Number Field
Sieve factoring algorithm), and the disproof of the Mertens conjecture (dis-
cussed In the next section). For some applications, this algorithm in fact
1s a very eflicient multi-dimensional continued fraction algorithm by which
one 1s able to find simultaneous approximations of vectors of real numbers
by vectors of rational numbers with the same denominator. This problem
occurs frequently in number theory.

3. COMPUTATIONAL NUMBER THEORY AT CWI

A recent survey of the research in computational number theory at CWTI in
the past 25 years is presented in [4]. We restrict ourselves here to giving
a concise description of the results obtained with respect to the Riemann
hypothesis, the Mertens conjecture, and the problem of factoring large num-
bers. The computational number theory group at CWI presently consists
of H.J.J. te Riele (project leader), W.M. Lioen and D.T. Winter (scientific
programmers), and H. Boender and R.-M. Huizing (junior researchers at
CWI and Leiden University). In 1993-1994, P.L.. Montgomery was a vis-
iting researcher in the group. J. van de Lune (senior researcher, retired
in 1993) was the initiator of the computational work on the Riemann hy-
pothesis, and of other projects of the group like the work on the Goldbach
conjecture. Close cooperation exists with the number theory group of R.
Tijdeman in Leiden.
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3.1. The Riemann hypothesis
Consider the function ((s) = > °_ n™% where s = o + it is a complex
variable. If o > 1, then the series converges, so that ((s) is properly defined
there. By using a technique now known as analytic continuation, Riemann
showed in 1859 that there is a unique function which coincides with ((s) for
o > 1, and which is analytic in the whole complex plane, except at the point
s = 1 (where the function has a pole of order 1). This function is known as
the Riemann zeta function, and it plays a prominent role in prime number
theory. It is known to have infinitely many complex zeros in the so-called
critical strip 0 < o < 1, and in an eight—page paper which appeared in
1809, Riemann wrote that it is very likely that all these zeros lie on the line
o = 5. So far, nobody has been able to (dis)prove this assertion, which is
known now as the Riemann hypothesis.

What is the relation between the Riemann hypothesis and prime number
theory? Let m(x) denote the number of primes < z. As early as in 1792 or
1793, C.F. Gauss conjectured that the density of the prime numbers close

to x 1s approximately equal to 1/logx, and that the so-called logarithmic
integral

, Y dt
li(x) = — (3.2)
> logt
1s a good approximation of the function 7(x). Extensive numerical com-
putations by A.M. Odlyzko suggest that the error in this approximation is

proportional to v/z: for x = 10'%, 10%*, 10, 107, 10!® we have
(7(z) — li(z))/Vz = —0.038, —0.031, —0.032, —0.025, —0.022,
respectively. The truth of the Riemann hypothesis implies that
m(z) = li(z) + O(z'?logz) as = — oo.

What is known about the location of the complex zeros of ((s)? Massive
numerical computations carried out by Van de Lune, Te Riele, and Winter
at CWI in 1983-1984 on a CDC Cyber 750 computer, and on a CDC Cyber
205 (one of the first vector computers in The Netherlands), have proved
that the first 1.5 x 10 complex zeros of ((s) are all simple and lie on
the line o = 5. The amount of CPU-time used was about 1000 (low-
priority) hours on both machines. This extended similar computational
work by R.P. Brent at the Australian National University in Canberra for
the first 156,800,001 complex zeros. Extensive computations by Odlyzko
have shown later that the Riemann hypothesis holds for long sequences of
consecutive zeros with rank in the neighbourhood of 10'%, 1019, and 1039,
Table 1 gives the successive published records in proving that the first n
complex zeros of the Riemann zeta function satisfy the Riemann hypothesis.
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~ Investigator
Gram (1903)
Backlund (191:)
' -Hutchm.son (192!-&.} -

Table 1. Numerical verification of the Riemann hypothesis for the first n complex zeros.

3.2. The Mertens conjecture
The Mertens conjecture is a statement about the so-called Mobius function

1, n=1,
n(n) = 0, 1if n is divisible by the square of a prime number,
(=1)*, if n is the product of k distinct primes.

Based on numerical data concerning the function

Y p(n

1<n<zx
F. Mertens stated in 1897 that the inequality
M (z)| < Vz, x>1,

is ‘very probable’. This is now known as the Mertens conjecture.

The size of M (x) is closely related to the location of the complex zeros
of the Riemann zeta function. In fact, it 1s not too difficult to show that
the boundedness of M (x)/+/x implies the truth of the Riemann hypothesis.
For all values of M (x) which have been computed explicitly, the Mertens
conjecture is true. In 1994, Lioen and Van de Lune at CWI established that
—0.513 < M(z)/+/z < 0.571 for 200 < = < 1.78 x 10*°. Their computations
consumed about 400 CPU-hours on a Cray C98 super vector computer.
Nevertheless, serious doubts concerning the truth of the Mertens conjecture
were raised already in 1942 by A.E. Ingham, who showed that 1t is possible
to prove the existence of certain large values of |M (z)|//x without the need
to explicitly compute M (x). In order to find such large values, one has to
solve a so-called simultaneous inhomogeneous Diophantine approximation
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Figure 3. Graph of the function h(yy + t) for t € [—3, +3] (left), with enlargement
of its central part (right).

problem. Using the algorithm of Lenstra, Lenstra, and Lovdasz, mentioned
in the previous section, Odlyzko and Te Riele in 1985 found a disproof of
the Mertens conjecture. This required to find a value y = yy for which a
certain function A(y) (which we shall not give explicitly here) assumes a
value > 1. The value found (see also figure 3) was:

Yo=—14045 2896805929 9804679036 1630399781 1274005919 9978973803 9965960762.521505.

Unfortunately, this disproof is ineffective: only the existence of an x where
M (x)|/v/x > 1 was proved. In 1987 however, J. Pintz gave an explicit
(huge) upper bound, proving that |M(z)|//x > 1 for z < exp(3.21 x 10%4).
For the computation of this upper bound, Pintz used 100-digit accurate
values of the first 2000 complex zeros of the Riemann zeta function, and 28—

digit accurate values of the next 12950 complex zeros, as computed earlier
by Te Riele for the ineffective disproof.

3.83. Factoring large numbers
At CWI much time and effort has been spent on the efficient implemen-
tation of the quadratic sieve method on large vector mainframes like the
CDC Cyber 205, the NEC SX-2, and the Cray Y-MP and Cray C98 vector
computers.

In the course of years, various new factorization records have been es-
tablished by the CWI Computational Number Theory group. These, and




COMPUTATIONAL NUMBER THEORY

many other factored numbers were contributions to the so-called Cunning-
ham Table (a table of known factors of numbers of the form a™ £ 1, initiated
m 1925 by A.J.C. Cunningham and H.J. Woodall) and to an extension of
this table.

In Table 2 we give some figures about record factorizations found at CWI
on vector computers. All results were obtained on one processor of the
vector computer listed. On the Cray Y-MP we could have used four CPUs.
thus reducing the sieving time by a factor of about four, since the most
time-consuming steps of the quadratic sieve algorithm are almost perfectly
parallelizable.

year  machine  size of sieving  Gaussian  approximate
numbers time elim. time order of
(decimals) (hours) (seconds) sparse system
1986  Cyber 205 72 4.3 21 6,070
79 12.2 37 7,400
1988 NEC SX-2 87 30 200 18,800
92 95 700 24,300
1991 Cray Y-MP 101 475 1800 50,200

Table 2. Record factorizations with QS on vector (super)computers.

T'he latest records were obtained in the summer of 1994 with the help
of the Cray C98 at SARA (The Academic Computing Centre Amsterdam),
and many workstations in a collaboration between Oregon State University
and CWI: a 162-digit Cunningham number was factored with the ‘Special
Number Field Sieve’ (SNF'S, for which the number n to be factored has
the form n = a™ =+ b, a and b being small compared to n), and a 105-digit
number was factored with the ‘General Number Field Sieve’ (GNFS, for
which no special form of n is known). One month after the latter result was
obtained, A.K. Lenstra, B. Dodson, and Montgomery cracked a 116-digit
partition number with GNFS. On November 26, 1994 S. Contini, Dodson,
A.K. Lenstra, and Montgomery completed the factorization of a 119-digit
cofactor of the 123-digit partition number p(13171) into two primes of 52
and 67 digits using GNFS. From the time they used (about 250 mips years)
they estimate that this is about 2.5 times less than what they would need
to factor a number of comparable size with the quadratic sieve method.

Montgomery and Huizing factored several other numbers with SNF'S (of
98, 99, 106, 119, 123, 135, and 137 decimal digits) including some more
and most wanted Cunningham numbers (i.e. difficult numbers in the Cun-
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ningham table, not yet factored) using a new algorithm of Montgomery for
computing the square root of the product of many algebraic numbers, and
his new iterative block Lanczos algorithm for finding dependencies in large
sparse matrices over GF(2). Huizing also factored 87-, 97-, and 107-digit
numbers with GNFS.

Currently, most factorization research at CWI aims at contributing to
the Cunningham tables. In the first update to the extended table. issued in
September 1994, all the composite numbers with less than 86 decimal digits

were completed. This bound has been raised in May 1995 to 90 decimal
digits.
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